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Abstract
In general, quantum field theories (QFT) require regularizations and infinite
renormalizations due to ultraviolet divergences in their loop calculations.
Furthermore, perturbation series in theories like quantum electrodynamics are
not convergent series, but are asymptotic series. We apply neutrix calculus,
developed in connection with asymptotic series and divergent integrals, to QFT,
obtaining finite renormalizations. While none of the physically measurable
results in renormalizable QFT is changed, quantum gravity is rendered more
manageable in the neutrix framework.

PACS numbers: 03.70.+k, 11.10.Gh, 11.10.−z

The procedure of regularization and renormalization is a big step forward in making sense
of the infinities that one encounters in calculating perturbative series in quantum field theories.
The result is a phenomenal success. For example, quantum electrodynamics (QED), the
paradigm of relativistic quantum field theories, suitably regularized and renormalized, is
arguably the most accurate theory ever devised by mankind. Yet in spite of the impressive
phenomenological successes, the spectre of infinite renormalizations has convinced many,
including such eminent physicists as Dirac and Schwinger, that we should seek a better
mathematical and/or physical foundation for quantum field theory, without simultaneously
tearing down the towering edifice we have built on the existing one. In another development,
Dyson [1] has shown that the series as defined by the Feynman rules in QED is not a convergent
series and has suggested that it is instead an asymptotic series in the fine structure constant
α, i.e., in the number of internal integrals (for given outside lines). In this letter, we propose
to apply neutrix calculus, in conjunction with Hadamard integrals, developed by J G van
der Corput [2] in connection with asymptotic series and divergent integrals, to quantum field
theories in general, and QED in particular, to obtain finite results for the coefficients in the
perturbation series. (A more detailed discussion [3] will appear elsewhere.) The replacement
of regular integrals by Hadamard integrals in quantum field theory appears to make good
mathematical sense, as van der Corput observed that Hadamard integrals are the proper tool
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to calculate the coefficients of an asymptotic series. (Actually Hadamard integrals work
equally well for convergent series.)

We begin by recalling the definition of asymptotic series [4]. The series f (x) =
a0 + a1(x − b) + a2(x − b)2 + · · · for finite b is an asymptotic series if and only if there
exists an n0 > 0, such that for n > n0,

lim
x→b

1

(x − b)n
|f (x) − a0 − a1(x − b) − · · · − an(x − b)n| = 0, (1)

with the remnant being at most ∼(x − b)n+1.
Next, following van der Corput [2], we define a neutrix as a class of negligible functions

defined in a domain, which satisfies the following two conditions: (1) the neutrix is an additive
group; (2) it does not contain any constant except 0. Let us illustrate the concept with the
following example considered by Hadamard: for s real,∫ 2

ξ

xs−1 dx =
{
s−12s − s−1ξ s for s �= 0
log 2 − log ξ for s = 0.

(2)

For s > 0, the integral converges even as ξ → 0. For s � 0, Hadamard neglects ξ s/s and
log ξ as ξ → 0. Here we have a neutrix which we will call N(0), consisting of functions
ν(ξ) = ε(ξ) + c1ξ

s + c2 log ξ , where ε(ξ) → 0 as ξ → 0, and where c1, c2 and s are
arbitrary constants. This results in writing∫ 2

N(0)

xs−1 dx =
{
s−12s for s �= 0
log 2 for s = 0.

(3)

Note the analytic extension in the complex s plane of the answer for Re s > 0 to the entire
complex plane with the exclusion of s = 0.

Before applying neutrices to QED, we need to consider the generalized Hadamard
neutrix Ha defined to contain the negligible functions

ν(ξ) = U(ξ) + ε(ξ), (4)

where ε(ξ) → 0 as ξ → a. Each of the functions U(ξ) is defined by an asymptotic series
based on a:

U(ξ) ∼ �∞
h=0χh(ξ − a)�h logkh(ξ − a). (5)

Here χh,�h and integers kh � 0 are independent of ξ , Re �h → ∞ as h → ∞ and logkh(ξ)

stands for (log(ξ))kh . An example is provided by∫ b

Ha

(z − a)−1 logk(z − a) dz = (k + 1)−1 logk+1(b − a). (6)

Similarly, we can define the Hadamard neutrix H∞ by equation (4) where now ε(ξ) → 0
as ξ → ∞ and the function U(ξ) has a Hadamard development in powers of ξ−1 in its
asymptotic series:

U(ξ) ∼ �∞
h=0χhξ

�h logkh ξ, (7)

where Re �h → −∞ as h → ∞.
We can now demonstrate a very valuable property of the Hadamard neutrix. Recall that

in the theory of distributions developed by Schwartz, generalized functions usually cannot be
multiplied. Consider, for example, the one-dimensional Dirac delta function multiplying itself
δ(x) × δ(x). This product is not mathematically meaningful because its Fourier transform
diverges ∫ ∞

−∞

dk

2π
1 × 1 −→ ∞, (8)
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where we have used the convolution rule in Fourier transform and have noted that the Fourier
transform of the Dirac delta function is 1. In contrast, the Hadamard method does allow
multiplication for a wide class of distributions. For the example of δ(x)×δ(x), the Hadamard-
neutralized Fourier transform of the product∫ H∞

H−∞

dk

2π
1 × 1 = 0, (9)

yields

δ(x) × δ(x) = 0, (10)

a mathematically meaningful (though somewhat counter-intuitive) result!
In doing quantum field theory in configuration space, we multiply operator-valued

distributions of quantum fields. Or, in a slightly different interpretation, we multiply singular
functions such as Feynman propagators. As we will see, the use of neutrix calculus allows
one to put these products on a mathematically sound basis. Let us now generalize the above
discussion for one-dimensional Dirac delta functions to the case of (3 + 1)-dimensional
Feynman propagators


+(x) =
∫

d4p

(2π)4

eip·x

p2 + m2 − iε
(11)

= 1

4π
δ(x2) − m

8π
√−x2 − iε

H
(2)
1

(
m

√
−x2 − iε

)
, (12)

where H(2) is the Hankel function of the second kind and we use the (+ + + −) metric. The
Fourier transform of 
+(x) × 
+(x) (which appears in certain quantum loop calculations) is
given by∫

d4x e−ip·x
+(x)
+(x) =
∫

d4k

(2π)4

1

k2 + m2 − iε

1

(p − k)2 + m2 − iε
(13)

= i

4(2π)2
D − i

4(2π)2

∫ 1

0
dz log

(
1 +

p2

m2
z(1 − z)

)
, (14)

where

D = 1

iπ2

∫
d4k

(k2 + m2)2

=
∫ ∞

0

k2 dk2

(k2 + m2)2
, (15)

with the second expression of D obtained after a Wick rotation. But D is logarithmically
divergent. Hence 
+(x) × 
+(x) is not mathematically well defined. Let us now see how the
Hadamard–van der Corput method gives mathematical meaning to this product. Obviously,
it is in the calculation of the logarithmically divergent D where we apply neutrix calculus.
Introducing the dimensionless variable q = k2/m2, we bring in H∞ to write D as

D =
∫ H∞

0

q dq

(q + 1)2
= −1, (16)

where we have recalled that, for q → ∞, log q is negligible in the Hadamard neutrix H∞.
It follows that, in the neutralized version, 
+(x) × 
+(x) ∼ δ(4)(x) + regular part (where
δ(4)(x) is the four-dimensional Dirac delta function), a much more mathematically palatable
object.
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As the first example in the application of neutrices to QED, let us consider the one-loop
contribution to the electron’s self-energy

�(p) = −ie2
∫

d4k

(2π)4

γµ[−γ · (p − k) + m]γ µ

[k2 + λ2][(p − k)2 + m2]
, (17)

where m is the electron bare mass and we have given the photon a fictitious mass λ to
regularize infrared divergences. Expanding �(p) about γ · p = −m,

�(p) = A + B(γ · p + m) + R, (18)

one finds (cf results found in [5])

A = − α

2π
m

(
3

2
D +

9

4

)
, (19)

B = − α

4π

(
D − 4

∫ 1

λ
m

dx

x
+

11

2

)
, (20)

where α = e2/4π is the fine structure constant and D is given by equations (15) and (16)
in the pre-neutralized and neutralized forms, respectively. We note that R, the last piece of
�(p) in equation (18), is finite. Mass renormalization and wavefunction renormalization are
given by mren = m − A and ψren = Z

−1/2
2 ψ respectively with Z−1

2 = 1 − B. Now, since
D = −1 is finite, it is abundantly clear that the renormalizations are finite in the framework
of neutrix calculus. There is no need for a separate discussion of the electron vertex function
renormalization constant Z1 due to the Ward identity Z1 = Z2.

The one-loop contribution to vacuum polarization is given by

�µν(k) = ie2
∫

d4p

(2π)4
Tr

(
γµ

1

γ · (
p + k

2

)
+ m

γν

1

γ · (
p − k

2

)
+ m

)
. (21)

A standard calculation [5] shows that �µν takes on the form

�µν = δm2ηµν + (k2ηµν − kµkν)�(k2), (22)

where ηµν is the flat metric (+ + + −),

δm2 = α

2π
(m2D + D′), (23)

and

�(k2) = − α

3π

(
D +

5

6

)
+

2α

π

∫ 1

0
dx x(1 − x) log

(
1 +

k2

m2
x(1 − x)

)
, (24)

with

D′ = 1

iπ2

∫
d4p

p2 + m2
, (25)

and D given by equation (15). Just as D is rendered finite upon invoking neutrix calculus
(see equation (16)), so is D′:

D′ = m2
∫ H∞

0

q dq

q + 1
= 0, (26)

since both q and log q, for q → ∞, are negligible in H∞. Thus neutrix calculus yields a
finite renormalization for both the photon mass and the photon wavefunction A

µ
ren = Z

−1/2
3 Aµ

(and consequently also for charge eren = Z
1/2
3 e) where Z−1

3 = 1 − �(0). In electron–electron
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scattering by the exchange of a photon with energy–momentum k, vacuum polarization effects
effectively replace e2 by e2/(1 − �(k2)), i.e.,

e2 → e2
eff = e2

1 − �(k2)

= e2
ren

Z3(1 − �(k2))

= e2
ren

1 − (�(k2) − �(0))
. (27)

Equation (24) can be used, for k2 � m2, to show that

αeff(k
2) = α

1 − α
3π

log
(

k2

exp(5/3)m2

) . (28)

Thus we have obtained the correct running of the coupling [6] with energy–momentum in the
framework of neutrices. In fact, the only effect of neutrix calculus, when applied to QED
(and other renormalizable theories), is to convert infinite renormalizations (obtained without
using neutrix calculus) to mathematically well-defined finite renormalizations. As far as we
can tell, all (finite) physically observable results of QED are recovered. In passing we mention
that the use of neutralized integrals does not affect the results of axial triangle anomalies.

As shown by the appearance of photon mass in the above discussion of vacuum
polarization, the application of neutrix calculus to the energy–momentum cutoff regularization,
though straightforward and natural, is ill suited for more complicated theories like those
involving Yang–Mills fields. For those theories, one should use other more convenient
regularization schemes. It is amusing to note that already in 1961 van der Corput suggested
that, instead of finding the appropriate neutrices, one can continue analytically in any variable
(presumably including the dimension of integrations) contained in the problem of tackling
apparent divergences to calculate the coefficients of the corresponding asymptotic series. In
hind sight, one recognizes that this was the approach taken by ’t Hooft and Veltman who
spearheaded the use of dimensional regularizations [6]. Let us now explore using neutrix
calculus in conjunction with the dimensional regularization scheme. In that case, negligible
functions will include 1/ε where ε = 4 − n is the deviation of spacetime dimensions from 4.
In the one-loop calculations for QED, the internal energy–momentum integration is now over
n dimensions. The forms of �(p) and �µν remain the same as given by equations (18)
and (22), but now with δm2 = 0. Using the approximation for the gamma function,
�(ε) = ε−1 − γ + O(ε), where γ � 0.577 is the Euler–Mascheroni constant, and the
approximation f ε � 1 + ε log f , for ε 	 1, one finds

A = αm

4π
[3(γ − log 4π) + 1] +

α

2π
m

∫ 1

0
dx(1 + x) log D0,

B = α

4π
[1 + γ − log 4π ] +

αm2

π

∫ 1

0
dx

x(1 − x2)

m2x2 + λ2(1 − x)
+

α

2π

∫ 1

0
dx(1 − x) log D0,

(29)

where D0 = m2x2 + λ2(1 − x), and

�(k2) = α

3π
[γ − log 4π ] +

2α

π

∫ 1

0
dx x(1 − x) log[m2 + x(1 − x)k2],

1

Z3
= 1 − α

3π
[γ − log 4π ] − α

3π
log m2.

(30)

By design, the generalized neutrix calculus renders all the renormalizations finite. Again,
all physically measurable results of QED appear to be recovered. In this letter we have
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explicitly considered QED to one-loop only. But we expect that higher-loop calculations
can be handled in the same way according to neutrix calculus. It will be interesting to
see explicitly whether neutrix calculus, applied to higher-loop calculations, can provide new
insights in the issue of overlapping divergences.

In the framework of quantum field theory for the four fundamental forces, the divergence
problem is particularly severe for quantum gravity. Using dimensional regularization, ’t Hooft
and Veltman [7] found that pure gravity is one-loop renormalizable, but in the presence of
a scalar field, renormalization was lost. For the latter case, they found that the counterterm
evaluated on the mass shell is given by ∼ε−1√gR2 with R being the Ricci scalar. Similar
results for the cases of Maxwell fields and Dirac fields etc (supplementing the Einstien field)
were obtained [8]. It is natural to enquire whether the application of neutrix calculus could
improve the situation. The result is that now essentially the divergent ε−1 factor is replaced
by −γ + constant.

It has not escaped our notice that neutrix calculus may ameliorate the hierarchy problem
in particle physics. The hierarchy problem is due to the fact that the Higgs scalar self-energies
diverge quadratically, leading to a stability problem in the standard model of particle physics.
But neutrix calculus treats quadratic divergences no different from logarithmic divergences,
since both divergences belong to (the negligible functions of) the neutrix. Neutrix calculus
may also ameliorate the cosmological constant problem in quantum gravity. The cosmological
constant problem can be traced to the quartic divergences in zero-point fluctuations from all
quantum fields. But again, neutrix calculus treats quartic divergences no different from
logarithmic divergences. Indeed, for a theory of gravitation with a cosmological constant
term, the cosmological constant receives at most a finite renormalization from the quantum
loops in the framework of neutrix calculus.

We conclude with a comment on what neutrix calculus means to the general question of
renormalizability of a theory. We recall that a theory is renormalizable if, in loop calculations,
the counterterms vanish or if they are proportional to terms in the original Lagrangian (the usual
renormalization through rescaling). It is still renormalizable if, to all loops, the counterterms
are of a new form, but only a finite number of such terms exist. By this standard, neutrix
calculus does not change the renormalizability of a theory, since it merely changes potentially
infinite renormalizations to finite renormalizations. On the other hand, non-renormalizable
terms, i.e., terms with positive superficial degree of divergence, are tolerated in neutralized
quantum field theory. In a sense it is a pity that we have lost renormalizability as a physical
restrictive criterion in the choice of sensible theories. However, we believe that this is actually
not as big a loss as it may first appear. Quite likely, all realistic theories now in our possession
are actually effective field theories [9, 10]. They appear to be renormalizable field theories
because, at energies now accessible, or more correctly, at sufficiently low energies, all the
non-renormalizable interactions are highly suppressed. By tolerating non-renormalizable
terms, neutrix calculus has freed us from the past dogmatic and rigid requirement of
renormalizability. (Having said that, given a choice between renormalizable field theories
and effective field theories, we still prefer the former to the latter because of the former’s
compactness and predictive power. But the point is that both types of theories can be
accommodated in the framework of neutrix calculus.) Furthermore, if the application of
neutrix calculus to loop calculations results in a term of a new form (like the Pauli term in
QED) that is finite, then we have a prediction which, in principle, can be checked against
experiments to confirm or invalidate the theory in question. For the latter case, we will have to
modify the theory by including a term of that form in the Lagrangian, making the parameter
associated with the new term an adjustable parameter rather than one that is predicted by the
theory. This loss of predictive power is again not as big a loss as one may dread.
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Lastly we should emphasize that, for renormalizable theories as well as non-
renormalizable theories (like quantum gravity?), neutrix calculus is a useful tool to the
extent that it is relevant for asymptotic series and lessens the divergence of the theories. On the
basis of our study so far, we tentatively conclude that neutrix calculus has banished infinities
from quantum field theory, rendering perturbative quantum field theory mathematically
meaningful.
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